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1. Let ABCM be a quadrilateral and D be an interior point such that
ABCD is a parallelogram. It is known that ∠AMB ≡ ∠CMD. Prove that
∠MAD ≡ ∠MCD.

Solution. Construct parallelogram ABEM. Then ∠AMB ≡ ∠MBE and,
since CDME is a parallelogram, ∠DMC ≡ ∠MCE. This leads to ∠MBE ≡
∠MCE, so the quadrilateral MBCE is cyclic. This yields ∠BCM ≡ ∠BEM
≡ ∠BAM , whence the conclusion.

2. Let S be a set of positive integer numbers such that

min { lcm (x, y) : x, y ∈ S, x 6= y } ≥ 2 + maxS.

Show that ∑
x∈S

1/x < 3/2.

Solution. The condition in the statement implies that there exists a
positive integer n which is a strict upper bound for S and a strict lower
bound for the set of the least common multiples of distinct numbers in S.
If x is a member of S, let Mx denote the set of positive multiples of x that
do not exceed n. Clearly, |Mx| = bn/xc. If x and y are distinct members of
S, then Mx and My are disjoint, for the least common multiple of x and y
is greater than n. Consequently,∑

x∈S
bn/xc =

∑
x∈S
|Mx| ≤ n

and |S| ≤ bn/2c (otherwise, some number in S would divide another, by a
well-known result of Erdős). Finally,

n
∑
x∈S

1/x− n/2 ≤ n
∑
x∈S

1/x− |S| =
∑
x∈S

(n/x− 1) <
∑
x∈S
bn/xc ≤ n,

whence the conclusion.



3. Determine all positive integer numbers n satisfying the following
condition: the sum of the squares of any n prime numbers greater than 3 is
divisible by n.

Solution. We begin by showing that if a positive integer k is relatively
prime to n, then k2 ≡ 1 (mod n). To this end, invoke the Dirichlet theorem
on arithmetic sequences to choose n − 1 primes congruent to 1 modulo n
and a prime congruent to k modulo n. The sum of the squares of these n
primes is congruent to k2 − 1 modulo n, so k2 ≡ 1 (mod n).

Next, we prove that n has no prime divisors greater than 3. Let p be an
odd divisor of n and write n = pαm, where α and m are positive integers
and p does not divide m. By the Chinese Remainder Theorem, there exists
a positive integer k such that k ≡ 1 (mod m) and k ≡ 2 (mod p). It is easily
seen that k and n are coprime, so k2 ≡ 1 (mod n) by the preceding. Hence
k2 ≡ 1 (mod p), and the condition k ≡ 2 (mod p) forces p = 3.

Consequently, n = 2α3β, where α and β are non-negative integers. Since
5 and n are coprime, the latter must be a divisor of 52−1 = 24. It is readily
checked that all divisors of 24 work.

4. Given a positive integer number n, determine the maximum number
of edges a triangle-free Hamiltonian simple graph on n vertices may have.

Solution. The required maximum is bn/2c2 if n is even and bn/2c2 + 1
if n is odd.

By Turán’s theorem, the maximum number of edges a triangle-free sim-
ple graph on n vertices may have is bn/2c b(n+ 1)/2c and is achieved only
by the complete graph Kbn/2c,b(n+1)/2c. If n is even, the latter is also Hamil-
tonian and we are done.

Consider the case n = 2m + 1, where m is an integer number greater
than 1. Let G be a triangle-free Hamiltonian simple graph on n vertices
with a maximum number of edges. Since G is Hamiltonian and has an odd
number of vertices, it has an odd cycle, so it must have a shortest odd cycle,
say C, of length 2k + 1, where k is an integer number greater than 1. No
additional edges forming diagonals in C may exist without creating a shorter
odd cycle. Each of the 2m− 2k vertices outside C may be joined to at most
two vertices of C, for any choice of more vertices of C would yield a shorter
odd cycle. Finally, with reference again to Turán’s theorem, the 2m − 2k
vertices outside C may induce at most (m− k)2 edges without forming any
triangles. Consequently, G has at most

(2k + 1) + 2(2m− 2k) + (m− k)2

edges. The largest possible value occurs when k = 2 and is m2 + 1. Many
Hamiltonian graphs achieve this bound. One of them, Hn, is constructed
from Km,m by inserting a vertex of degree 2 on any one edge.
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