Solutions Calarasi 2013

Problem 1. Given six points on a circle, A, a, B, b, C, ¢, show that the Pascal lines of the
hexagrams AaBbCc, AbBcCa, AcBaCb are concurrent.

Solution. The lines Aa and bC meet at D, and the lines Bb and cA meet at D’ to determine
the Pascal line of the hexagram AaBbCc; similarly, the lines Be¢ and aA meet at E, and the
lines C'a and bB meet at E’ to determine the Pascal line of the hexagram AbBcCa; finally, the
lines Cb and ¢B meet at F, and the lines Ac and aC meet at F’ to determine the Pascal line
of the hexagram AcBaCb. By Desargues’ theorem, the lines DD, EE’, FF' are concurrent if
and only if the pairs of lines DE and D'E’, EF and E'F’, FD and F’D’ meet at three collinear
points. Since the latter lie on the Pascal line of the hexagram AcBbCa, the conclusion follows.

Problem 2. Let a, b, ¢, n be four integers, where n > 2, and let p be a prime dividing both
a’+ab+b? and a” +b" +c", but not a-+b+c; for instance, a = b = —1 (mod 3), ¢ = 1 (mod 3),
n a positive even integer, and p=3ora=4,b=7,c= —13, n = 5, and p = 31 satisfy these
conditions. Show that n and p — 1 are not coprime.

Solution. Throughout the proof congruences are taken modulo p. Begin by ruling out the
case p = 2. If p = 2, then a® + ab+ b? and a™ + b + ¢” are both even, and a + b + ¢ is odd.
The first condition forces both a and b even, so c is also even by the second, contradicting the
third. Consequently, p must be odd, and the conclusion follows unless n is odd.

Henceforth assume n odd. It is easily seen from the conditions in the statement that a Z 0,
so a~! exists modulo p, and the hypotheses yield B2 + B+1 =0, B"+C"+ 1 = 0 and
B+C+1#0, where B =a"'b and C = a~!c. The first congruence yields B = 1, where
B # 1. (Otherwise, 3 =0, s0 p =3, C" =1 and C # 1 which is impossible since n is odd.)
Hence 3 is a factor of p — 1; in particular, p > 7 and p — 1 is divisible by 6, so the conclusion
follows unless n = 6m =+ 1.

Let n = 6m + 1 and recall that B = 1 to deduce that B>* + B"+1 = B*2 + Bl + 1 = 0,
so C" = B* = (—B — 1)"; that is, (—-C(B + 1)_1)n =1, since B+ 1 # 0. The condition
B+ C +1 # 0 shows that —C(B + 1)~! # 1, so the multiplicative order of —C(B 4 1)~! in

Zy, is a divisor d of n, greater than 1. Since d is also a divisor of p — 1, the conclusion follows.

Remark. The argument shows that if n is a prime greater than 3, then p — 1 is divisible by
6n. This is precisely the case in the second example in the statement.

Problem 3. Show that, for every integer r > 2, there exists an r-chromatic simple graph (no
loops, nor multiple edges) which has no cycle of less than 6 edges.

Solution. The case r = 2 is clear: Any cycle of even length works. In the other cases, define
a sequence of graphs G,, r > 3, as follows. The graph G3 is a cycle of just 7 edges. (Any
larger odd number would do.) When G, is defined, with n, vertices say, construct G,y as

follows. Consider
™m, —1r+1
ny

disjoint copies of G,. Adjoin rn, — r + 1 extra vertices. Set up a one-to-one correspondence
between the copies of GG, and the n,-element sets of extra vertices. Join each copy of G, to
the members of the corresponding n,-element set of extra vertices by n, disjoint new edges
(no two have a common end). The resulting graph is G,41.



The construction ensures that no graph G, has a cycle of less than 6 edges.

Clearly, G3 is 3-chromatic. If r > 3 and G,41 has a colouring C in r or fewer colours, then
some n, of the extra vertices in G,;1 must share the same colour in C, so the corresponding
copy of G, must be coloured in r — 1 or fewer colours. It follows, by descending induction,
that G5 must be coloured in 2 or fewer colours which is, of course, impossible. Consequently,
no G, can be coloured in less than r colours.

This does not prove that G, is r-chromatic, but if it is not, deletion of some monochromatic
classes of vertices together with their incident edges yields one such.

Problem 4. Show that there exists a proper non-empty subset S of the set of real numbers
such that, for every real number z, the set {nz + S: n € N} is finite, where nx + S =
{nz+s:seS}.

Solution. Let H be a Hamel basis; that is, H is a set of real numbers such that every real
number x can uniquely be written in the form

x = Z q(z, h) - h, (%)

heH

where the g(x,h) are all rational and vanish for all but a finite number (depending on z) of
h’s. The existence of Hamel bases can be proved via Zorn’s lemma or Zermelo’s well ordering
theorem or any other statement equivalent to the axiom of choice.

We are now going to prove that the set S of those real numbers  whose ¢(x, h) in (x) are all
integral satisfies the required condition.

To this end, fix a real number z. Since the conclusion is clear if x = 0, let x be different from
0 and let m(x) be the least common multiple of the denominators of the non-vanishing g(x, h)
in (*). Finally, notice that m(x) - = is a member of S, to conclude that any set of the form
nx+.S, where n is a non-negative integer, must be one of the sets re+S, r =0,1,...,m(z)—1.



