Călăraşi 2014

Problema 1. Două cercuri secante $\mathcal{C}_{1}, \mathcal{C}_{2}$ au punctele comune A şi A^{\prime}. Tangenta în A la \mathcal{C}_{1} taie \mathcal{C}_{2} în B, tangenta în A la \mathcal{C}_{2} taie \mathcal{C}_{1} în C, iar dreapta $B C$ taie din nou \mathcal{C}_{1} sil \mathcal{C}_{2} în D_{1}, respectiv D_{2}. Se consideră punctele $E_{1} \in\left(A D_{1}\right)$ şi $E_{2} \in\left(A D_{2}\right)$, astfel încât $A E_{1}=A E_{2}$. Dreptele $B E_{1}$ şi $A C$ se intersectează în punctul M, dreptele $C E_{2}$ şi $A B$ se intersectează în punctul N, iar dreptele $M N$ şi $B C$ se intersectează în punctul P. Arătaţi că $P A$ este tangentă la cercul circumscris triunghiului $A B C$.

Problema 2. Fie S o mulţime de numere naturale nenule, astfel încât $\lfloor\sqrt{x}\rfloor=\lfloor\sqrt{y}\rfloor$, oricare ar fi elementele x şi y ale lui S. Arătaţi că produsele $x y$, unde $x, y \in S$, sunt distincte două câte două.

Problema 3. Arătaţi că, oricare ar fi numărul întreg $n \geq 2$, există o mulţime de n numere întregi compuse, coprime două câte două, care formează o progresie aritmetică.

Problema 4. Fie n un număr natural nenul şi fie Δ triunghiul cu vârfurile în punctele laticiale $(0,0),(n, 0)$ şi $(0, n)$. Determinaţi cardinalul maxim al unei mulţimi S de puncte laticiale situate în interiorul sau pe bordul lui Δ, astfel încât segmentul determinat de oricare două puncte distincte $\operatorname{din} S$ să nu fie paralel cu niciuna dintre laturile lui Δ.

Călăraşi 2014 — Solutions

Problem 1. Two circles γ_{1} and γ_{2} cross one another at two points; let A be one of these points. The tangent to γ_{1} at A meets again γ_{2} at B, the tangent to γ_{2} at A meets again γ_{1} at C, and the line $B C$ meets again γ_{1} and γ_{2} at D_{1} and D_{2}, respectively. Let E_{1} and E_{2} be interior points of the segments $A D_{1}$ and $A D_{2}$, respectively, such that $A E_{1}=A E_{2}$. The lines $B E_{1}$ and $A C$ meet at M, the lines $C E_{2}$ and $A B$ meet at N, and the lines $M N$ and $B C$ meet at P. Show that the line $P A$ is tangent to the circle $A B C$.

Solution. We shall prove that $P A^{2}=P B \cdot P C$. By Stewart's relation, $P A^{2} \cdot B C \mp A B^{2}$. $P C \pm A C^{2} \cdot P B=P B \cdot P C \cdot B C$, this amounts to showing $P B \cdot A C^{2}=P C \cdot A B^{2}$.

To begin, apply Menelaus' theorem to triangles $A B D_{2}, A C D_{1}, A B C$ and transversals $N E_{2} C$, $M E_{1} B, M N P$, respectively, to write

$$
\frac{N B}{N A} \cdot \frac{C D_{2}}{C B} \cdot \frac{E_{2} A}{E_{2} D_{2}}=1, \quad \frac{M A}{M C} \cdot \frac{E_{1} D_{1}}{E_{1} A} \cdot \frac{B C}{B D_{1}}=1, \quad \frac{M C}{M A} \cdot \frac{N A}{N B} \cdot \frac{P B}{P C}=1,
$$

so, multiplying the three,

$$
\begin{equation*}
\frac{E_{1} D_{1}}{E_{2} D_{2}} \cdot \frac{C D_{2}}{B D_{1}} \cdot \frac{P B}{P C}=1, \tag{*}
\end{equation*}
$$

on account of $A E_{1}=A E_{2}$. Since $\angle A D_{1} B=\angle B A C=\angle A D_{2} C$, it follows that $A D_{1}=A D_{2}$, so $E_{1} D_{1}=E_{2} D_{2}$, with reference again to $A E_{1}=A E_{2}$. Consequently, $P B / P C=B D_{1} / C D_{2}$, by ($*$).

Finally, similarity of the triangles $A B C$ and $D_{1} B A$ yields $B D_{1}=A B^{2} / B C$. Similarly, $C D_{2}=$ $A C^{2} / B C$, so $P B \cdot A C^{2}=P C \cdot A B^{2}$, by the preceding. This ends the proof.

Problem 2. Let S be a set of positive integers such that $\lfloor\sqrt{x}\rfloor=\lfloor\sqrt{y}\rfloor$ for all $x, y \in S$. Show that the products $x y$, where $x, y \in S$, are pairwise distinct.

Solution. We first show that if $x_{1}, x_{2}, x_{3}, x_{4}$ are (not necessarily distinct) members of S such that $x_{1} x_{2} \leq x_{3} x_{4}$, then $x_{1}+x_{2} \leq x_{3}+x_{4}$.
Suppose, if possible, that $x_{1}+x_{2}>x_{3}+x_{4}$. Let $n=\lfloor\sqrt{x}\rfloor, x \in S$, and write $x_{k}=n^{2}+w_{k}$, where the w_{k} are non-negative integers less than $2 n+1$, to deduce that $w_{1}+w_{2}-w_{3}-w_{4} \geq 1$. The condition $x_{1} x_{2} \leq x_{3} x_{4}$ yields $\left(w_{1}+w_{2}-w_{3}-w_{4}\right) n^{2} \leq w_{3} w_{4}-w_{1} w_{2}$, so $w_{3}>0$ and

$$
\begin{aligned}
n^{2} & \leq\left(w_{1}+w_{2}-w_{3}-w_{4}\right) n^{2} \leq w_{3} w_{4}-w_{1} w_{2}<w_{3}\left(w_{1}+w_{2}-w_{3}\right)-w_{1} w_{2} \\
& =\left(w_{1}-w_{3}\right)\left(w_{3}-w_{2}\right) \leq\left(\left(w_{1}-w_{3}\right)+\left(w_{3}-w_{2}\right)\right)^{2} / 4=\left(w_{1}-w_{2}\right)^{2} / 4 \leq n^{2},
\end{aligned}
$$

which is a contradiction.
Thus, if $x_{1}, x_{2}, x_{3}, x_{4}$ are members of S such that $x_{1} x_{2}=x_{3} x_{4}$, then $x_{1}+x_{2}=x_{3}+x_{4}$, so $x_{1}^{2}+x_{3} x_{4}=x_{1}\left(x_{1}+x_{2}\right)=x_{1}\left(x_{3}+x_{4}\right)$, i.e., $\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)=0$ whence $x_{1}=x_{3}$ or $x_{1}=x_{4}$. The conclusion now follows at once.

Remark. The result is sharp, in the sense that the conclusion may fail if the square roots of the members of S do not all have the same integral part. This is the case if, for instance, n^{2}, $n^{2}+n$ and $(n+1)^{2}$ are all members of S, since $n^{2}(n+1)^{2}=\left(n^{2}+n\right)\left(n^{2}+n\right)$.

Problem 3. Given any integer $n \geq 2$, show that there exists a set of n pairwise coprime composite integers in arithmetic progression.

Solution. Fix a prime $p>n$ and an integer $N \geq p+(n-1) n$! and consider the arithmetic progression of length n consisting of the numbers $N!+p+k n!, k=0,1, \ldots, n-1$.
Suppose, if possible, that q is a prime factor of two of these numbers. Then q divides their difference which is of the form $k n!$, for some positive integer $k<n$. It follows that q does not exceed n, so n ! and N ! are both divisible by q, and consequently so is p - a contradiction.

Problem 4. Let n be a positive integer and let Δ be the closed triangular domain with vertices at the lattice points $(0,0),(n, 0)$ and $(0, n)$. Determine the maximal cardinality a set S of lattice points in Δ may have, if the line through every pair of distinct points in S is parallel to no side of Δ.

Solution. The required maximum is $\lfloor 2 n / 3\rfloor+1$ and is achieved, for instance, for

$$
S=\{(2 k,\lfloor n / 3\rfloor-k): k=0, \ldots,\lfloor n / 3\rfloor\} \cup\{(2 k+1,2\lfloor n / 3\rfloor-k): k=0, \ldots,\lfloor n / 3\rfloor-1\},
$$

if $n \equiv 0$ or $n \equiv 1$ modulo 3 , and

$$
S=\{(2 k,\lfloor n / 3\rfloor-k): k=0, \ldots,\lfloor n / 3\rfloor\} \cup\{(2 k+1,2\lfloor n / 3\rfloor-k+1): k=0, \ldots,\lfloor n / 3\rfloor\},
$$

if $n \equiv 2$ modulo 3 .
If (x, y) is a point in Δ, and $z=z(x, y)$ is the distance from (x, y) to the side through $(n, 0)$ and $(0, n)$, then

$$
\begin{equation*}
x+y+z \sqrt{2}=n \tag{1}
\end{equation*}
$$

and if, in addition, (x, y) is a lattice point, then x, y and $z \sqrt{2}$ are all non-negative integers (not exceeding n).
Now, let S be a set of lattice points in Δ satisfying the condition in the statement, and sum (1) over all points (x, y) in S to get

$$
\begin{equation*}
\sum_{(x, y) \in S} x+\sum_{(x, y) \in S} y+\sum_{(x, y) \in S} z \sqrt{2}=n|S| . \tag{2}
\end{equation*}
$$

As (x, y) runs through S, each of the three coordinates x, y and $z \sqrt{2}$ runs through $|S|$ nonnegative disitnct integers, so each of the three sums in (2) is greater than or equal to $0+1+$ $\cdots+(|S|-1)=|S|(|S|-1) / 2$. Consequently, $3|S|(|S|-1) / 2 \leq n|S|$, so $|S| \leq 2 n / 3+1$ and the conclusion follows.

