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1. Let ABC be a triangle, D the foot of the altitude from A and M the midpoint of the
side BC. Let S be a point on the closed segment DM and let P,Q the projections of S on the
lines AB and AC respectively. Prove that the length of the segment PQ does not exceed one
quarter the perimeter of the triangle ABC.
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Solution. From the cyclic quadrilateral APSQ, whose circumcircle has diameter AS, PQ =
AS sin P̂AQ. So, the largest value of PQ is obtained when AS is largest, that is when S = M .

In the case S = M , denote E, F the midpoints of the segments AB, respectively AC and
G, H the midpoints of the segments ME, respectively MC. Then

PQ ≤ PG+GH +HQ =
1

2
(EM + EF + FM) =

1

4
P4ABC ,

as desired. Equality occurs if and only if ABC is equilateral.

2. A bank has a set S of codes for its customers, in the form of sequences of 0 and 1,
each sequence being of length n. Two codes are called close if they are different at exactly one
position. It is known that each code from S has exactly k close codes in S.

a) Show that S has an even number of elements.
b) Show that S contains at least 2k codes.
Solution. Start by noticing that we can suppose that S contains the nil code (0, 0, . . . , 0):

otherwise take a code x ∈ S and replace S with the set S′ = x + S = {x + y | y ∈ S}, where
addition is taken mod 2. Then S′ and S have the same cardinal and S′ fulfills the same condition
as S.

In the sequel we will denote w(x) the number of non-nil components of the code x and
Si = {x ∈ S | w(x) = i}.

a) Consider the bipartite graph G = A ∪ B, where the vertices are the codes, A = {x ∈ S |
w(x) = even}, B = {x ∈ S | w(x) = odd} and an edge between two vertices exists if and only if
the corresponding codes are close. Count the edges of this graph: from A emerge k · |A| edges
and from B emerge k · |B| edges. But k · |A| = k · |B|, hence A and B have the same number of
vertices, whence the conclusion.

b) Notice first that |S0| = 1. Take now x ∈ Si. The set Si−1 has at most i codes close to x
and the set Si+1 has at least k− i codes close to x. On the other hand, each code from Si+1 has
at most i+ 1 close codes in the set Si.

Consider now the (bipartite) subgraph Si∪Si+1. We count the number N of its edges twice:
first we count the edges emerging from Si to find that N ≥ (k − i)|Si|, then we count the edges
emerging from Si+1 to find that N ≤ (i+ 1)|Si+1|. So, (i+ 1)|Si+1| ≥ (k − i)|Si|.

The last inequality yields inductively to |Si| ≥ Cik for every 0 ≤ i ≤ k, whence |S| ≥ 2k.



3. Let n > 1 be an integer and a1, a2, . . . , an be positive integers with sum 1.
a) Show that there exists a constant c ≥ 1/2 so that

n∑
k=1

ak
1 + (a0 + · · ·+ ak−1)2

≥ c,

where a0 = 0.
b) Show that ’the best’ value of c is at least π/4.

Solution. For the first part, notice that

n∑
k=1

ak
1 + (a0 + · · ·+ ak−1)2

≥
n∑
k=1

ak
(1 + a0 + a1 + · · ·+ ak−1)2

.

Since
ak

(1 + a0 + a1 + · · ·+ ak−1)2
≥ ak

(1 + a0 + a1 + · · ·+ ak−1)(1 + a0 + a1 + · · ·+ ak)

=
1

1 + a0 + a1 + · · ·+ ak−1
− 1

1 + a0 + a1 · · ·+ ak
,

the relation follows by summing.
For the second part we denote xk = a0 + a1 + · · ·+ ak and use the inequality

xk+1 − xk
1 + x2k

≥ arctanxk+1 − arctanxk,

valid for 1 ≥ xk+1 ≥ xk ≥ 0. This is equivalent to tan
xk+1−xk
1+x2k

≥ xk+1−xk
1+xkxk+1

, and results from

tanx ≥ x for x ∈ (0, π2 ).
Remark. Taking ak = 1/n, k = 1, 2, . . . , n and n → ∞, a limit argument shows that the

value c = π/4 cannot be improved.

4. Prove that there exist only finitely many positive integers n such that(n
1

+ 1
)(n

2
+ 2
)(n

3
+ 3
)
...
(n
n

+ n
)

is an integer.
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Solution. Assume that n is sufficiently large. We claim that there exists a prime number
p ≤ n such that p does not divide k2 + n, for any integer k.

Lemma. There exist coprime positive integers a, b of different parities such that

3n ≤ (a2 + b2)2 ≤ 4n.

Proof. We may take a = 1 and b even maximal such that a2 + b2 ≤ 2
√
n, etc. �

Note that N = 4n− (a2 + b2)2 ≡ 3(mod4), so we can find a prime factor p of N which is of
the form 4k + 3, since N ≥ 0. We claim that p satisfies the desired property.

Recall that for a prime number p ≡ 3(mod4), if p divides x2 + y2, then p divides both x and
y. Assume that there was some k such that p divides k2 + n. Then

p|(2k)2 + (a2 + b2)2,

hence p|a2 + b2, since p ≡ 3(mod4). Then, p|a and p|b, contradicting gcd(a, b) = 1.


