The 2016 Danube Competition in Mathematics, October $29^{\text {th }}$

1. Let $A B C$ be a triangle, D the foot of the altitude from A and M the midpoint of the side $B C$. Let S be a point on the closed segment $D M$ and let P, Q the projections of S on the lines $A B$ and $A C$ respectively. Prove that the length of the segment $P Q$ does not exceed one quarter the perimeter of the triangle $A B C$.

Adrian Zahariuc

Solution. From the cyclic quadrilateral $A P S Q$, whose circumcircle has diameter $A S, P Q=$ $A S \sin \widehat{P A Q}$. So, the largest value of $P Q$ is obtained when $A S$ is largest, that is when $S=M$.

In the case $S=M$, denote E, F the midpoints of the segments $A B$, respectively $A C$ and G, H the midpoints of the segments $M E$, respectively $M C$. Then

$$
P Q \leq P G+G H+H Q=\frac{1}{2}(E M+E F+F M)=\frac{1}{4} P_{\triangle A B C},
$$

as desired. Equality occurs if and only if $A B C$ is equilateral.
2. A bank has a set S of codes for its customers, in the form of sequences of 0 and 1 , each sequence being of length n. Two codes are called close if they are different at exactly one position. It is known that each code from S has exactly k close codes in S.
a) Show that S has an even number of elements.
b) Show that S contains at least 2^{k} codes.

Solution. Start by noticing that we can suppose that S contains the nil code $(0,0, \ldots, 0)$: otherwise take a code $x \in S$ and replace S with the set $S^{\prime}=x+S=\{x+y \mid y \in S\}$, where addition is taken $\bmod 2$. Then S^{\prime} and S have the same cardinal and S^{\prime} fulfills the same condition as S.

In the sequel we will denote $w(x)$ the number of non-nil components of the code x and $S_{i}=\{x \in S \mid w(x)=i\}$.
a) Consider the bipartite graph $G=A \cup B$, where the vertices are the codes, $A=\{x \in S \mid$ $w(x)=$ even $\}, B=\{x \in S \mid w(x)=$ odd $\}$ and an edge between two vertices exists if and only if the corresponding codes are close. Count the edges of this graph: from A emerge $k \cdot|A|$ edges and from B emerge $k \cdot|B|$ edges. But $k \cdot|A|=k \cdot|B|$, hence A and B have the same number of vertices, whence the conclusion.
b) Notice first that $\left|S_{0}\right|=1$. Take now $x \in S_{i}$. The set S_{i-1} has at most i codes close to x and the set S_{i+1} has at least $k-i$ codes close to x. On the other hand, each code from S_{i+1} has at most $i+1$ close codes in the set S_{i}.

Consider now the (bipartite) subgraph $S_{i} \cup S_{i+1}$. We count the number N of its edges twice: first we count the edges emerging from S_{i} to find that $N \geq(k-i)\left|S_{i}\right|$, then we count the edges emerging from S_{i+1} to find that $N \leq(i+1)\left|S_{i+1}\right|$. So, $(i+1)\left|S_{i+1}\right| \geq(k-i)\left|S_{i}\right|$.

The last inequality yields inductively to $\left|S_{i}\right| \geq C_{k}^{i}$ for every $0 \leq i \leq k$, whence $|S| \geq 2^{k}$.
3. Let $n>1$ be an integer and $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers with sum 1 .
a) Show that there exists a constant $c \geq 1 / 2$ so that

$$
\sum_{k=1}^{n} \frac{a_{k}}{1+\left(a_{0}+\cdots+a_{k-1}\right)^{2}} \geq c
$$

where $a_{0}=0$.
b) Show that 'the best' value of c is at least $\pi / 4$.

Solution. For the first part, notice that

$$
\sum_{k=1}^{n} \frac{a_{k}}{1+\left(a_{0}+\cdots+a_{k-1}\right)^{2}} \geq \sum_{k=1}^{n} \frac{a_{k}}{\left(1+a_{0}+a_{1}+\cdots+a_{k-1}\right)^{2}} .
$$

Since

$$
\begin{aligned}
\frac{a_{k}}{\left(1+a_{0}+a_{1}+\cdots+a_{k-1}\right)^{2}} & \geq \frac{a_{k}}{\left(1+a_{0}+a_{1}+\cdots+a_{k-1}\right)\left(1+a_{0}+a_{1}+\cdots+a_{k}\right)} \\
& =\frac{1}{1+a_{0}+a_{1}+\cdots+a_{k-1}}-\frac{1}{1+a_{0}+a_{1} \cdots+a_{k}},
\end{aligned}
$$

the relation follows by summing.
For the second part we denote $x_{k}=a_{0}+a_{1}+\cdots+a_{k}$ and use the inequality

$$
\frac{x_{k+1}-x_{k}}{1+x_{k}^{2}} \geq \arctan x_{k+1}-\arctan x_{k}
$$

valid for $1 \geq x_{k+1} \geq x_{k} \geq 0$. This is equivalent to $\tan \frac{x_{k+1}-x_{k}}{1+x_{k}^{2}} \geq \frac{x_{k+1}-x_{k}}{1+x_{k} x_{k+1}}$, and results from $\tan x \geq x$ for $x \in\left(0, \frac{\pi}{2}\right)$.

Remark. Taking $a_{k}=1 / n, k=1,2, \ldots, n$ and $n \rightarrow \infty$, a limit argument shows that the value $c=\pi / 4$ cannot be improved.
4. Prove that there exist only finitely many positive integers n such that

$$
\left(\frac{n}{1}+1\right)\left(\frac{n}{2}+2\right)\left(\frac{n}{3}+3\right) \ldots\left(\frac{n}{n}+n\right)
$$

is an integer.
Adrian Zahariuc
Solution. Assume that n is sufficiently large. We claim that there exists a prime number $p \leq n$ such that p does not divide $k^{2}+n$, for any integer k.

Lemma. There exist coprime positive integers a, b of different parities such that

$$
3 n \leq\left(a^{2}+b^{2}\right)^{2} \leq 4 n
$$

Proof. We may take $a=1$ and b even maximal such that $a^{2}+b^{2} \leq 2 \sqrt{n}$, etc.
Note that $N=4 n-\left(a^{2}+b^{2}\right)^{2} \equiv 3(\bmod 4)$, so we can find a prime factor p of N which is of the form $4 k+3$, since $N \geq 0$. We claim that p satisfies the desired property.

Recall that for a prime number $p \equiv 3(\bmod 4)$, if p divides $x^{2}+y^{2}$, then p divides both x and y. Assume that there was some k such that p divides $k^{2}+n$. Then

$$
p \mid(2 k)^{2}+\left(a^{2}+b^{2}\right)^{2},
$$

hence $p \mid a^{2}+b^{2}$, since $p \equiv 3(\bmod 4)$. Then, $p \mid a$ and $p \mid b$, contradicting $\operatorname{gcd}(a, b)=1$.

