The 2016 Danube Competition in Mathematics, October 29"

1. Let ABC be a triangle, D the foot of the altitude from A and M the midpoint of the
side BC. Let S be a point on the closed segment DM and let P, Q) the projections of S on the
lines AB and AC respectively. Prove that the length of the segment P(Q does not exceed one
quarter the perimeter of the triangle ABC.
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Solw. From the cyclic quadrilateral APS(Q, whose circumcircle has diameter AS, PQ =
AS'sin PAQ. So, the largest value of P(Q is obtained when AS is largest, that is when S = M.
In the case S = M, denote E, F the midpoints of the segments AB, respectively AC' and
G, H the midpoints of the segments M F, respectively M C. Then

1 1
PQgPG—{—GH—FHQ:§(EM+EF+FM):ZPAA30,

as desired. Equality occurs if and only if ABC' is equilateral.

2. A bank has a set S of codes for its customers, in the form of sequences of 0 and 1,
each sequence being of length n. Two codes are called close if they are different at exactly one
position. It is known that each code from S has exactly k close codes in S.

a) Show that S has an even number of elements.

b) Show that S contains at least 2¥ codes.

Solution. Start by noticing that we can suppose that S contains the nil code (0,0,...,0):
otherwise take a code z € S and replace S with the set S’ =2+ S ={x+y |y € S}, where
addition is taken mod 2. Then S’ and S have the same cardinal and S’ fulfills the same condition
as S.

In the sequel we will denote w(z) the number of non-nil components of the code z and
Si={zxeS|w(x) =i}

a) Consider the bipartite graph G = A U B, where the vertices are the codes, A = {zx € S |
w(z) =even}, B={x € S| w(z) =odd} and an edge between two vertices exists if and only if
the corresponding codes are close. Count the edges of this graph: from A emerge k - |A| edges
and from B emerge k- |B| edges. But k- |A| = k- |B|, hence A and B have the same number of
vertices, whence the conclusion.

b) Notice first that |Sg| = 1. Take now = € S;. The set S;_; has at most ¢ codes close to =
and the set S;4; has at least k — ¢ codes close to . On the other hand, each code from S;1; has
at most 7 + 1 close codes in the set S;.

Consider now the (bipartite) subgraph S; U .S; ;1. We count the number N of its edges twice:
first we count the edges emerging from S; to find that N > (k —4)|S;|, then we count the edges
emerging from S;y; to find that N < (i 4+ 1)[Siy1]- So, (¢ + 1)[Si+1| > (k —14)|Si|.

The last inequality yields inductively to |S;| > C% for every 0 < i < k, whence |S| > ok,



3. Let n > 1 be an integer and ay,as,...,a, be positive integers with sum 1.
a) Show that there exists a constant ¢ > 1/2 so that

n

D 1
— 1+ (a0 + - +ap-1)® 7

where ag = 0.
b) Show that 'the best’ value of ¢ is at least 7 /4.

Solution. For the first part, notice that

n

n
(7% af
> .
;1+(a0+---+ak1)2 _;(1+ao+a1+~--+ak1)2

Since
af > aj
(I+ao+ar+---+ap1)*> ~ (I+ao+ar+-+ap1)(1 +ap+ar+--+ag)
1 1
l4ao+ar+-+ap1 l4ag+ai - +ag

the relation follows by summing.

For the second part we denote xx = ag + a1 + - - - + ax and use the inequality
T —x
LQIC > arctan ryy1 — arctan g,

1+

Tp4+1— Tk > Th4+1— Tk
1+a22 = l4zpTp

valid for 1 > xgy1 > xr > 0. This is equivalent to tan , and results from

tanz > x for x € (0, 75).
Remark. Taking ar, = 1/n, k = 1,2,...,n and n — oo, a limit argument shows that the
value ¢ = 7/4 cannot be improved.

4. Prove that there exist only finitely many positive integers n such that

n n n n

)G G- (o)

<1+ 2—|— 3+3 n—i—n
is an integer.
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Solution. Assume that n is sufficiently large. We claim that there exists a prime number
p < n such that p does not divide k? + n, for any integer k.

Lemma. There exist coprime positive integers a, b of different parities such that
3n < (a® +b%)* < 4n.

Proof. We may take a = 1 and b even maximal such that a? + b < 2,/n, etc. O
Note that N = 4n — (a? + b%)? = 3(mod4), so we can find a prime factor p of N which is of
the form 4k + 3, since N > 0. We claim that p satisfies the desired property.
Recall that for a prime number p = 3(mod4), if p divides 2 + 2, then p divides both x and
y. Assume that there was some k such that p divides k2 + n. Then
pl(2k)? + (a® + b?)?,

hence pla? + b2, since p = 3(mod4). Then, p|a and p|b, contradicting ged(a, b) = 1.



